bsm-54471R [Primary Antibody]
mTOR Monoclonal Antibody
www.biossusa.com
[email protected]
800.501.7654 [DOMESTIC]
+1.781.569.5821 [INTERNATIONAL]
DATASHEET

Host: Rabbit

Target Protein: mTOR

Clonality: Monoclonal

Isotype: IgG

Entrez Gene: 2475

Swiss Prot: P42345

Source: Recombinant human mTOR

Purification: Purified by Protein A.

Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.02% Proclin300 and 50% Glycerol.

Storage: Store at -20°C for 12 months.

Background:

Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B and the inhibitor of translation initiation PDCD4. Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 a RNA polymerase III-repressor. In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1. To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A. mTORC1 also negatively regulates autophagy through phosphorylation of ULK1. Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-758', disrupting the interaction with AMPK and preventing activation of ULK1. Also prevents autophagy through phosphorylation of the autophagy inhibitor DAP. mTORC1 exerts a feedback control on upstream growth factor signaling that includes phosphorylation and activation of GRB10 a INSR-dependent signaling suppressor. Among other potential targets mTORC1 may phosphorylate CLIP1 and regulate microtubules. As part of the mTORC2 complex MTOR may regulate other cellular processes including survival and organization of the cytoskeleton. Plays a critical role in the phosphorylation at 'Ser-473' of AKT1, a pro-survival effector of phosphoinositide 3-kinase, facilitating its activation by PDK1. mTORC2 may regulate the actin cytoskeleton, through phosphorylation of PRKCA, PXN and activation of the Rho-type guanine nucleotide exchange factors RHOA and RAC1A or RAC1B. mTORC2 also regulates the phosphorylation of SGK1 at 'Ser-422'.

Size: 100ul

Concentration: 1ug/ul

Predicted Molecular Weight: 289


Cross Reactive Species: Human
Mouse
Rat

For research use only. Not intended for diagnostic or therapeutic use.

PRODUCT SPECIFIC PUBLICATIONS
  • Lei Wang. et al. Neuroprotective effect of Lactobacillus plantarum DP189 on MPTP-induced Parkinson's disease model mice. J Funct Foods. 2021 Oct;85:104635Read more>>
  • Lu-Chang Liang. et al. Caffeic acid phenethyl ester reverses doxorubicin resistance in breast cancer cells via lipid metabolism regulation at least partly by suppressing the Akt/mTOR/SREBP1 pathway. KAOHSIUNG J MED SCI. 2023 MaRead more>>
  • Zhao Zhongwei. et al. Anticancer potential of Bacillus coagulans MZY531 on mouse H22 hepatocellular carcinoma cells via anti-proliferation and apoptosis induction. BMC Complementary Medicine and Therapies. 2023 Dec;23(1):1-9Read more>>